Find the condition that zeros pf …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Tejaswini Venuturumilli 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let a - d, a and a + d be the zeros of the polynomial F(x). Then,
Sum of the zeroes = {tex}- \frac { \text { Coefficient of } x ^ { 2 } } { \text { Coefficient of } x ^ { 3 } }{/tex}
{tex}\Rightarrow (a-d)+a+(a+d)=-\frac { ( - p ) } { 1 }{/tex}
{tex}\Rightarrow 3a=p{/tex}
{tex}\Rightarrow a=\frac { p } { 3 }{/tex}
Since {tex}a{/tex} is a zero of the polynomial {tex}f(x){/tex}. Therefore,
{tex}f(a)=0{/tex}
{tex}\Rightarrow a^3-pa^2+qa-r=0{/tex}
{tex}\Rightarrow \left( \frac { p } { 3 } \right) ^ { 3 } - p \left( \frac { p } { 3 } \right) ^ { 2 } + q \left( \frac { p } { 3 } \right) - r = 0{/tex}
{tex}\Rightarrow p^3-3p^3+9pq-27r=0{/tex}
{tex}\Rightarrow 2p^3-9pq+27r=0{/tex}
hence, {tex}2p^3-9pq+27r=0{/tex} is the required condition
1Thank You