tanA/1-cotA+cotA/1-tanA=1+tanA+cotA=1+secAcosecA
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Siddharth Khare 5 years, 10 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months ago
- 0 answers
Posted by S Prajwal 3 months, 3 weeks ago
- 0 answers
Posted by Lakshay Kumar 5 months, 3 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 9 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 9 months, 2 weeks ago
- 2 answers
Posted by Kanika . 7 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 9 months, 2 weeks ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 10 months ago
We have,
LHS=tanA1−cotA+cotA1−tanA
⇒LHS=tanA1−1tanA+1tanA1−tanA
⇒ LHS =tanAtanA−1tanA+1tanA(1−tanA)
⇒LHS=tan2AtanA−1+1tanA(1−tanA)
⇒ LHS =tan2AtanA−1−1tanA(tanA−1)
⇒LHS=tan3A−1tanA(tanA−1) [Taking LCM]
⇒LHS=(tanA−1)(tan2A+tanA+1)tanA(tanA−1) [∵ a3 - b3 = ( a - b )(a2 + ab + b2)]
⇒LHS=tan2A+tanA+1tanA
⇒LHS=tan2AtanA+tanAtanA+1tanA
⇒ LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].
= (1 + tanA + cotA)
∴tanA1−cotA+cotA1−tanA = 1 + tanA + cotA ...........(1)
Now, 1 + tanA + cotA
= 1 + sinAcosA+cosAsinA
= 1 + sin2A+cos2AsinAcosA = 1 + 1sinAcosA [∵Sin2A + Cos2 A = 1 ]
= 1 + cosecAsecA
So, 1 + tanA + cotA = 1+ cosecAsecA.......(2)
From (1) and (2), we obtain
tanA1−cotA+cotA1−tanA = 1 + tanA + cotA = 1 + cosecAsecA
0Thank You