tanA/1-cotA+cotA/1-tanA=1+tanA+cotA=1+secAcosecA
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Siddharth Khare 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 2 months ago
- 2 answers
Posted by Hari Anand 3 months, 4 weeks ago
- 0 answers
Posted by Lakshay Kumar 10 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 2 months ago
- 2 answers
Posted by Parinith Gowda Ms 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 1 month, 1 week ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years, 3 months ago
We have,
{tex}\mathrm { LHS } = \frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan A } { 1 - \frac { 1 } { \tan A } } + \frac { \frac { 1 } { \tan A } } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan A } { \frac { \tan A -1 } { \tan A } } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } - \frac { 1 } { \tan A ( \tan A - 1 ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 3 } A - 1 } { \tan A ( \tan A - 1 ) }{/tex} [Taking LCM]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \tan A - 1 ) \left( \tan ^ { 2 } A + \tan A + 1 \right) } { \tan A ( \tan A - 1 ) }{/tex} [{tex}\because{/tex} a3 - b3 = ( a - b )(a2 + ab + b2)]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A + \tan A + 1 } { \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A } + \frac { \tan A } { \tan A } + \frac { 1 } { \tan A }{/tex}
{tex}\Rightarrow{/tex} LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].
= (1 + tanA + cotA)
{tex}\therefore \quad \frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex} = 1 + tanA + cotA ...........(1)
Now, 1 + tanA + cotA
= 1 + {tex}\frac { \sin A } { \cos A } + \frac { \cos A } { \sin A }{/tex}
= 1 + {tex}\frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin A \cos A }{/tex} = 1 + {tex}\frac { 1 } { \sin A \cos A }{/tex} [{tex}\because{/tex}Sin2A + Cos2 A = 1 ]
= 1 + cosecAsecA
So, 1 + tanA + cotA = 1+ cosecAsecA.......(2)
From (1) and (2), we obtain
{tex}\frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex} = 1 + tanA + cotA = 1 + cosecAsecA
0Thank You