No products in the cart.

tanA/1-cotA+cotA/1-tanA=1+tanA+cotA=1+secAcosecA

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

tanA/1-cotA+cotA/1-tanA=1+tanA+cotA=1+secAcosecA
  • 1 answers

Sia ? 6 years, 3 months ago

We have,
{tex}\mathrm { LHS } = \frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan A } { 1 - \frac { 1 } { \tan A } } + \frac { \frac { 1 } { \tan A } } { 1 - \tan A }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan A } { \frac { \tan A -1 } { \tan A } } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } + \frac { 1 } { \tan A ( 1 - \tan A ) }{/tex}
{tex}\Rightarrow \quad \text { LHS } = \frac { \tan ^ { 2 } A } { \tan A - 1 } - \frac { 1 } { \tan A ( \tan A - 1 ) }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 3 } A - 1 } { \tan A ( \tan A - 1 ) }{/tex} [Taking LCM]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { ( \tan A - 1 ) \left( \tan ^ { 2 } A + \tan A + 1 \right) } { \tan A ( \tan A - 1 ) }{/tex} [{tex}\because{/tex} a3 - b3 = ( a - b )(a2 + ab + b2)]
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A + \tan A + 1 } { \tan A }{/tex}
{tex}\Rightarrow \quad \mathrm { LHS } = \frac { \tan ^ { 2 } A } { \tan A } + \frac { \tan A } { \tan A } + \frac { 1 } { \tan A }{/tex}
{tex}\Rightarrow{/tex} LHS = tanA + 1 + cotA         [ since (1/tanA) =cotA ].
= (1 + tanA + cotA)
{tex}\therefore \quad \frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex} = 1 + tanA + cotA ...........(1)

Now, 1 + tanA + cotA
  = 1 + {tex}\frac { \sin A } { \cos A } + \frac { \cos A } { \sin A }{/tex}
 = 1 + {tex}\frac { \sin ^ { 2 } A + \cos ^ { 2 } A } { \sin A \cos A }{/tex}  = 1 + {tex}\frac { 1 } { \sin A \cos A }{/tex} [{tex}\because{/tex}Sin2A + Cos2 A = 1 ] 
= 1 + cosecAsecA
So, 1 + tanA + cotA = 1+ cosecAsecA.......(2)

From (1) and (2), we obtain
{tex}\frac { \tan A } { 1 - \cot A } + \frac { \cot A } { 1 - \tan A }{/tex} = 1 + tanA + cotA = 1 + cosecAsecA

http://mycbseguide.com/examin8/

Related Questions

X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App