No products in the cart.

The parallax of a heavenly body …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

  1. The parallax of a heavenly body measured from two point diametrically opp. On the equator of the earth is 1.0minute.if the radius of the earth is 6400km, find the distance of the heavenly body from the centre of the earth in AU.?
  • 2 answers

Arun Soni 8 years, 5 months ago

{tex} \eqalign{ & Here,\theta = 1\min = \frac{1}{{60}} \times \frac{\pi }{{180}} \cr & \ r = \frac{l}{\theta } \cr & l = 2 \times 6400 \times {10^3}m \cr &\Rightarrow r = \frac{{2 \times 6400 \times {{10}^3} \times 60 \times 180}}{\pi } \approx 4.4 \times {10^{10}}m \cr & 1A.U = 1.5 \times {10^{11}}m \cr &\Rightarrow r = \frac{{4.4 \times {{10}^{10}}}}{{1.5 \times {{10}^{11}}}} \approx 0.29AU \cr}{/tex}

Arun Soni 8 years, 5 months ago

{tex} \eqalign{ & Here,\theta = 1\min = \frac{1}{{60}} \times \frac{\pi }{{180}} \cr & \Rightarrow r = \frac{l}{\theta } \cr & l = 2 \times 6400 \times {10^3}m \cr & \Rightarrow r = \frac{{2 \times 6400 \times {{10}^3} \times 60 \times 180}}{\pi } \approx 4.4 \times {10^{10}}m \cr & 1A.U = 1.5 \times {10^{11}}m \cr &\Rightarrow r = \frac{{4.4 \times {{10}^{10}}}}{{1.5 \times {{10}^{11}}}} \approx 0.29AU \cr}{/tex}

https://examin8.com Test

Related Questions

Ch 1 question no. 14
  • 0 answers
2d+2d =
  • 1 answers
√kq,qpower2 R2
  • 0 answers
Project report
  • 0 answers
1dyne convert to S.I unit
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App