(1÷sec^2theta-cos^2theta+1÷cosec^2theta-sin^2theta) sin^2theta cis^2theta =1-sin^2thetacos^2theta÷2+sin^2thetacos^2theta

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Kanika . 1 month, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
LHS{tex} = \left( {\frac{1}{{{{\sec }^2}\theta - {{\cos }^2}\theta }} + \frac{1}{{\cos e{c^2}\theta - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{1}{{{{\cos }^2}\theta }} - {{\cos }^2}\theta }} + \frac{1}{{\frac{1}{{{{\sin }^2}\theta }} - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{{1 - {{\cos }^4}\theta }}{{{{\cos }^2}\theta }}}} + \frac{1}{{\frac{{1 - {{\sin }^4}\theta }}{{{{\sin }^2}\theta }}}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta }}{{1 - {{\cos }^4}\theta }} + \frac{{{{\sin }^2}\theta }}{{1 - {{\sin }^4}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^4}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 - {{\cos }^4}\theta } \right)\left( {1 - {{\sin }^4}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex}=\left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)\left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \cdot {{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta {{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right){{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex} {tex}\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta {{\cos }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\sin }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \frac{{{{\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}^2} - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}{/tex}
{tex} = \frac{{1 - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \times 1}}{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex} {tex}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{1 + 1 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{2 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
= RHS
Hence proved
0Thank You