No products in the cart.

(1÷sec^2theta-cos^2theta+1÷cosec^2theta-sin^2theta) sin^2theta cis^2theta =1-sin^2thetacos^2theta÷2+sin^2thetacos^2theta

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

(1÷sec^2theta-cos^2theta+1÷cosec^2theta-sin^2theta) sin^2theta cis^2theta =1-sin^2thetacos^2theta÷2+sin^2thetacos^2theta
  • 1 answers

Sia ? 6 years, 4 months ago

LHS{tex} = \left( {\frac{1}{{{{\sec }^2}\theta - {{\cos }^2}\theta }} + \frac{1}{{\cos e{c^2}\theta - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{1}{{{{\cos }^2}\theta }} - {{\cos }^2}\theta }} + \frac{1}{{\frac{1}{{{{\sin }^2}\theta }} - {{\sin }^2}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{1}{{\frac{{1 - {{\cos }^4}\theta }}{{{{\cos }^2}\theta }}}} + \frac{1}{{\frac{{1 - {{\sin }^4}\theta }}{{{{\sin }^2}\theta }}}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta }}{{1 - {{\cos }^4}\theta }} + \frac{{{{\sin }^2}\theta }}{{1 - {{\sin }^4}\theta }}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^4}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 - {{\cos }^4}\theta } \right)\left( {1 - {{\sin }^4}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex}=\left( {\frac{{{{\cos }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta \left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)\left( {1 - {{\sin }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^2}\theta \cdot {{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^2}\theta {{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right){{\cos }^2}\theta \left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex} {tex}\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{{{\sin }^2}\theta {{\cos }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){\sin ^2}\theta {\cos ^2}\theta {/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta \left( {1 + {{\sin }^2}\theta } \right) + {{\sin }^4}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \left( {\frac{{{{\cos }^4}\theta + {{\sin }^4}\theta + {{\cos }^4}\theta {{\sin }^2}\theta + {{\sin }^4}\theta {{\cos }^2}\theta }}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}} \right){/tex}
{tex} = \frac{{{{\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}^2} - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\left( {1 + {{\cos }^2}\theta } \right)\left( {1 + {{\sin }^2}\theta } \right)}}{/tex}
{tex} = \frac{{1 - 2{{\cos }^2}\theta {{\sin }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta \times 1}}{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex} {tex}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{1 + 1 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
{tex} = \frac{{1 - {{\cos }^2}\theta {{\sin }^2}\theta }}{{2 + {{\cos }^2}\theta {{\sin }^2}\theta }}{/tex}
= RHS
Hence proved

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App