The angle of elevation of the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Kanika . 1 month, 3 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Height of tower = 100 m

Let height of rock = h m = CD
Let distance between them = xm = AC
Using {tex}\triangle {/tex} ACD,{tex}\frac{x}{h} = \cot {45^ \circ }{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{x}{h} = 1 \Rightarrow x = h{/tex}.........(i)
In {tex}\triangle {/tex} BED,{tex}\frac{x}{{h - 100}} = \cot {30^ \circ }{/tex} (since DE = DC - EC)
= DC - AB
= (h-100m)
{tex}\Rightarrow {/tex} {tex}\frac{x}{{h - 100}} = \sqrt 3 {/tex}
x = {tex}\sqrt 3 h - 100\sqrt 3 {/tex}
From (i) and (ii), we get
{tex}\sqrt 3 h - 100\sqrt 3 = h{/tex}
{tex}\Rightarrow {/tex} {tex}\sqrt 3 h - h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}\left( {\sqrt 3 - 1} \right)h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}h = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}}{/tex}
= {tex}\frac{{300 + 100\sqrt 3 }}{{3 - 1}} = \frac{{300 + 100 \times 1.73}}{2}{/tex}
h = {tex}\frac{{300 + 173}}{2} = \frac{{473}}{2} = 236.5\,m{/tex}
Hence, the height of rock is 236.5 m.
0Thank You