No products in the cart.

The angle of elevation of the …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The angle of elevation of the top of a rock from the top and foot of a 100m high tower are respectively 30°and45°. Find the height of the rock
  • 1 answers

Sia ? 6 years, 4 months ago

Height of tower = 100 m
Let height of rock = h m = CD
Let distance between them = xm = AC
Using {tex}\triangle {/tex} ACD,{tex}\frac{x}{h} = \cot {45^ \circ }{/tex} 
{tex}\Rightarrow {/tex} {tex}\frac{x}{h} = 1 \Rightarrow x = h{/tex}.........(i)
In
{tex}\triangle {/tex} BED,{tex}\frac{x}{{h - 100}} = \cot {30^ \circ }{/tex}  (since DE = DC - EC)
= DC - AB
= (h-100m)

{tex}\Rightarrow {/tex} {tex}\frac{x}{{h - 100}} = \sqrt 3 {/tex}
x = {tex}\sqrt 3 h - 100\sqrt 3 {/tex}
From (i) and (ii), we get

{tex}\sqrt 3 h - 100\sqrt 3 = h{/tex}
{tex}\Rightarrow {/tex} {tex}\sqrt 3 h - h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}\left( {\sqrt 3 - 1} \right)h = 100\sqrt 3 {/tex}
{tex}\Rightarrow {/tex} {tex}h = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} = \frac{{100\sqrt 3 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}}{/tex}
= {tex}\frac{{300 + 100\sqrt 3 }}{{3 - 1}} = \frac{{300 + 100 \times 1.73}}{2}{/tex}
h = {tex}\frac{{300 + 173}}{2} = \frac{{473}}{2} = 236.5\,m{/tex}
Hence, the height of rock is 236.5 m.

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App