Q. The height of a cone …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 4 months ago
- 0 answers
Posted by Hari Anand 6 months, 4 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let the radius of original cone be r2
Radius of cut off cone be r1
According to the question
Height of the original cone = 10 cm (given)
The cone is cut off from the midpoint of the height,
therefore, height the cone cut off = 5 cm
{tex}\Delta A O C \sim \Delta AO' D{/tex}
OA = Radius of original cone = r2
O'A' = Radius of cutoff cone = r1
Ratio of radius of two cones = Ratio of the height of cones
{tex}\therefore \quad \frac { A O } { A' O ^ { \prime } } = \frac { r _ { 2 } } { r _ { 1 } } = \frac { 10 } { 5 }{/tex}
{tex}\Rightarrow \quad r _ { 2 } = 2 r _ { 1 }{/tex}
Radius of original cone = 2 (radius of the cut off cone)
Volume of the cut off cone {tex}= \frac { 1 } { 3 } \pi r _ { 1 } ^ { 2 } \times 5{/tex}
{tex}= \frac { 5 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Volume of original cone {tex}= \frac { 1 } { 3 } \pi \left( 2 r _ { 1 } \right) ^ { 2 } \times 10{/tex}
{tex}= \frac { 40 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Volume of frustum = Volume of an original cone - Volume of cut off cone
{tex}= \frac { 40 } { 3 } \pi r _ { 1 } ^ { 2 } - \frac { 5 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex}
{tex}= \frac { 35 } { 3 } \pi r _ { 1 } ^ { 2 }{/tex} cubic units
Required ratio = Volume of frustum: Volume of cut off cone
{tex}= \frac { 35 \pi r _ { 1 } ^ { 2 } } { 5 \pi r _ { 1 } ^ { 2 } } = \frac { 7 } { 1 }{/tex}
Therefore, the required ratio = 7: 1.
0Thank You