in an equilateral triangle ABC, D …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Chanchal Chhonkar 6 years, 9 months ago
- 3 answers
Puja Sahoo? 6 years, 9 months ago
Related Questions
Posted by Kanika . 1 month, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 4 months ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 6 months, 3 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 4 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Gaurav Seth 6 years, 9 months ago
Sol:
![]()
Given: In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC.
To prove: 9AD2 = 7AB2
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD2 = AE2 + DE2 ---------(1)
In a right angled triangle ABE
AB2 = AE2 + BE2 ---------(2)
From equ (1) and (2) we obtain
⇒ AD2 - AB2 = DE2 - BE2 .
⇒ AD2 - AB2 = (BE – BD)2 - BE2 .
⇒ AD2 - AB2 = (BC / 2 – BC/3)2 – (BC/2)2
⇒ AD2 - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2
⇒ AD2 - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4
⇒ AD2 = (36AB2 + AB2– 9AB2) / 36
⇒ AD2 = (28AB2) / 36
⇒ AD2 = (7AB2) / 9
9AD2 = 7AB2 .
0Thank You