No products in the cart.

In a acute triangle ABC, AD …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

In a acute triangle ABC, AD is a median. Prove that 4AD^2 + BC^2 = 2AB^2 + 2AC^2
  • 1 answers

Gaurav Seth 6 years, 10 months ago

 

Given: In ∆ ABC, AD is the median

Construction: Draw AE ⊥BC 

 

Now since AD is the median

∴ BD = CD =BC             ....... (1)

 

In ∆ AED

AD2 = AE2 + DE2                 (Pythagoras theorem)

⇒ AE2 = AD2 – DE2            ......... (2)

 

In ∆ AEB

AB2 = AE2 + BE2 

= AD2 – DE2 + BE2 (from (2))

= (BD + DE)2 + AD2 – DE2 (∵ BE = BD + DE)

= BD2 + DE2 + 2BD·DE  + AD2 – DE2

= BD2 + AD2 + 2·BD·DE

 

In ∆ AED

AC2 = AE2 + EC2

= AD2 – DE2 + EC2                 (from (5))

= AD2 – DE2 + (DC – DE)2

= AD2 – DE2 + DC2 + DE2 – 2DC·DE

= AD2 + DC2 – 2DC·DE

 

Adding (3) and (4) we get

 AB2 + AC2 =BC2 + AD2 + BC·DE + AD2 +BC2 – BC·DE

⇒ 2 (AB2 + AC2) = BC2 + 4AD2

⇒ 4AB2 + BC2 = 2AB2 + BC2

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App