No products in the cart.

If p is a prime number …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If p is a prime number then prove that √p is irrational
  • 1 answers

Gaurav Seth 6 years, 10 months ago

Let us assume, to the contrary, that √p is
rational.
So, we can find coprime integers a and b(b ≠ 0)
such that √p = a/b
=> √p b = a
=> pb2 = a2 ….(i) [Squaring both the sides]
=> a2 is divisible by p
=> a is divisible by p
So, we can write a = pc for some integer c.
Therefore, a2 = p2c2 ….[Squaring both the sides]
=> pb2 = p2c2 ….[From (i)]
=> b2 = pc2
=> b2 is divisible by p
=> b is divisible by p
=> p divides both a and b.
=> a and b have at least p as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction arises because we have
assumed that √p is rational.
Therefore, √p is irrational.

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App