No products in the cart.

If the zeros of the polynomial …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the zeros of the polynomial x square plus PX Plus double in value zeros to the zeros 2 x square minus 5 x minus 3 find the value of P and Q question mark
  • 1 answers

Sia ? 6 years, 6 months ago

Let f(x) = 2x2- 5x - 3
Let the zeroes of polynomial be {tex}\alpha{/tex} and {tex}\beta{/tex}, then
Sum of zeroes = {tex}\alpha + \beta = \frac { 5 } { 2 }{/tex}
Product of zeroes = {tex}{/tex}{tex}\alpha \beta = - \frac { 3 } { 2 }{/tex}
According to the question, zeroes of x2+ px + q are {tex}2 \alpha \text { and } 2 \beta{/tex}.
{tex}\therefore\ {/tex} Sum of zeroes = {tex}{/tex}{tex}- \frac { \text { Coeff. of } x } { \text { Coeff of } x ^ { 2 } } = \frac { - p } { 1 }{/tex}
{tex}\Rightarrow{/tex} -p = {tex}2 \alpha + 2 \beta = 2 ( \alpha + \beta ){/tex}
{tex}{/tex}{tex}\Rightarrow\ {/tex} -p= {tex}2 \times \frac { 5 } { 2 } = 5{/tex} or p = -5
Now ,Product of zeroes = {tex}\frac { \text { Constant term } } { \text { Coeff of } x ^ { 2 } } = \frac { q } { 1 }{/tex}
{tex}\Rightarrow{/tex} q = {tex}2 \alpha \times 2 \beta = 4 \alpha \beta{/tex}
{tex}\Rightarrow{/tex} q = {tex}4 \left( - \frac { 3 } { 2 } \right){/tex} = -6
{tex}\therefore{/tex} p = -5 and q = -6

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App