No products in the cart.

An arithmetic progression 5,12,19......has 50 terms. …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

An arithmetic progression 5,12,19......has 50 terms. Find its last term. Hence find the sum of its last 15 terms.
  • 1 answers

Sia ? 6 years, 4 months ago

We have {tex}a = 5{/tex} and {tex}d = 12 - 5 = 7{/tex} and {tex}n = 50{/tex}
{tex}a_n = a + (n - 1)d{/tex}
{tex}\therefore{/tex} a50 = 5 + (50 -1 )7
= 5 + 49 {tex}\times{/tex} 7
= 5 + 343
= 348
Also the first term of the A.P of last 15 terms be a36
a36 = 5 + (36 - 1)7
= 5 + 35 {tex}\times{/tex} 7
= 5 + 245
= 250
Now, sum of last 15 terms
{tex}\therefore \quad S _ {15} = \frac { 15 } { 2 } [ 2 \times 250 + ( 15 - 1 ) 7 ]{/tex}
{tex}= \frac { 15 } { 2 } ( 500 + 14 \times 7 ){/tex}
{tex}= \frac { 15 } { 2 } ( 500 + 98 ){/tex}
{tex}= \frac { 15 } { 2 } \times 598{/tex}
= {tex}15 \times 299{/tex}
= 4485
Hence, sum of last 15 terms = 4485

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App