If cosecA+cotA=p then prove that cosA=p^2-1/p^2+1

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Manoj Panth 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given, cosec θ + cot θ = p...(i)
We know that, {tex}cosec^2\theta-cot^2\theta=1{/tex}
{tex}\Rightarrow (cosec\theta+cot\theta)(cosec\theta-cot\theta)=1{/tex}
{tex}\Rightarrow p(cosec\theta-cot\theta)=1{/tex}
{tex}\Rightarrow cosec\theta-cot\theta=\frac 1p{/tex} ....(ii)
Adding i and ii, we get
{tex}2cosec\theta=p+ \frac 1p{/tex}
{tex}cosec\theta=\frac{p^2+1}{2p}{/tex}
{tex}\Rightarrow sin\theta= \frac{1}{cosec\theta}=\frac{2p}{p^2+1}{/tex}
We know that,{tex}cos\theta=\sqrt{1-sin^2\theta}=\sqrt{1- \frac{4p^2}{(p^2+1)^2}}=\sqrt{\frac{p^4+1-2p^2}{(p^2+1)^2}}{/tex}
{tex}cos\theta=\sqrt{\frac{(p^2-1)^2}{(p^2+1)^2}}=\frac{p^2-1}{p^2+1} {/tex}
0Thank You