Prove that, (1+tan theta)(sin theta-cos theta)=(sec …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Durgesh Kumar Singh 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
LHS = (1 + tan{tex}\theta{/tex} + cot{tex}\theta{/tex})(sin{tex}\theta{/tex} - cos{tex}\theta{/tex})
{tex}= \left( 1 + \frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } \right) ( \sin \theta - \cos \theta ){/tex}
{tex}= \left( \frac { \cos \theta \sin \theta + \sin ^ { 2 } \theta + \cos ^ { 2 } \theta } { \cos \theta \sin \theta } \right) ( \sin \theta - \cos \theta ){/tex}
{tex}= \frac { ( \cos \theta \sin \theta + 1 ) } { \cos \theta \sin \theta } ( \sin \theta - \cos \theta ){/tex}
RHS = {tex}\left( \frac { \sec \theta } { \ cosec ^ { 2 } \theta } - \frac { \cos e c \theta } { \sec ^ { 2 } \theta } \right) = \left( \frac { \frac { 1 } { \cos \theta } } { \frac { 1 } { \sin ^ { 2 } \theta } } - \frac { \frac { 1 } { \sin \theta } } { \frac { 1 } { \cos ^ { 2 } \theta } } \right){/tex}
{tex}= \left( \frac { \sin ^ { 2 } \theta } { \cos \theta } - \frac { \cos ^ { 2 } \theta } { \sin \theta } \right) = \frac { \sin ^ { 3 } \theta - \cos ^ { 3 } \theta } { \cos \theta \sin \theta }{/tex}
{tex}= \frac { ( \sin \theta - \cos \theta ) \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta + \cos \theta \sin \theta \right) } { \cos \theta \sin \theta }{/tex} [{tex}\because{/tex} a3 - b3 = (a - b) (a2 + ab + b2) ]
{tex}= \frac { ( \sin \theta - \cos \theta ) ( 1 + \cos \theta \sin \theta ) } { \cos \theta \sin \theta }{/tex}
{tex}\therefore{/tex} LHS = RHS
0Thank You