No products in the cart.

Find up to three places of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Find up to three places of decimals where the radius of the circle whose area is sum of the area of two triangles whose sides are 35,53,66 and 33,56,65 measured in centimeters.
  • 1 answers

Sia ? 6 years, 4 months ago

We have to find  upto  three places of decimal the radius of the circle whose area is the sum of the areas of two triangles whose sides are 35, 53, 66 and 33, 56, 65 measured in centimetres. {tex}{/tex} 

For the first triangle, we have a = 35, b = 53 and c = 66.
{tex}\therefore \quad s = \frac { a + b + c } { 2 } = \frac { 35 + 53 + 66 } { 2 } = 77 \mathrm { cm }{/tex}
Let {tex}\Delta _ { 1 }{/tex} be the area of the first triangle. Then,
{tex}\Delta _ { 1 } = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 1 } = \sqrt { 77 ( 77 - 35 ) ( 77 - 53 ) ( 77 - 66 ) } = \sqrt { 77 \times 42 \times 24 \times 11 }{/tex}
{tex}\Rightarrow \quad \Delta _ { 1 } = \sqrt { 7 \times 11 \times 7 \times 6 \times 6 \times 4 \times 11 }{/tex}{tex}\sqrt { 7 ^ { 2 } \times 11 ^ { 2 } \times 6 ^ { 2 } \times 2 ^ { 2 } } = 7 \times 11 \times 6 \times 2 = 924 \mathrm { cm } ^ { 2 }{/tex} ...(i)
For the second triangle, we have a = 33,b = 56,c = 65
{tex}\therefore \quad s = \frac { a + b + c } { 2 } = \frac { 33 + 56 + 65 } { 2 } = 77 \mathrm { cm }{/tex}
Let {tex}\Delta{/tex}2 be the area of the second triangle. Then,
{tex}\Delta _ { 2 } = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = \sqrt { 77 ( 77 - 33 ) ( 77 - 56 ) ( 77 - 65 ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = \sqrt { 77 \times 44 \times 21 \times 12 }{/tex}{tex}\sqrt { 7 \times 11 \times 4 \times 11 \times 3 \times 7 \times 3 \times 4 } = \sqrt { 7 ^ { 2 } \times 11 ^ { 2 } \times 4 ^ { 2 } \times 3 ^ { 2 } }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = 7 \times 11 \times 4 \times 3 = 924 \mathrm { cm } ^ { 2 }{/tex}
Let r be the radius of the circle. Then,
Area of the circle = Sum of the areas of two triangles
{tex}\Rightarrow \quad \pi r ^ { 2 } = \Delta _ { 1 } + \Delta _ { 2 }{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 }{/tex}= 924 + 924
{tex}\Rightarrow \quad \frac { 22 } { 7 } \times r ^ { 2 } = 1848{/tex}
{tex}\Rightarrow \quad r ^ { 2 } = 1848 \times \frac { 7 } { 22 } = 3 \times 4 \times 7 \times 7 \Rightarrow{/tex}{tex}r = \sqrt { 3 \times 2 ^ { 2 } \times 7 ^ { 2 } } = 2 \times 7 \times \sqrt { 3 } = 14 \sqrt { 3 } \mathrm { cm }{/tex}

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App