Find up to three places of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
We have to find upto three places of decimal the radius of the circle whose area is the sum of the areas of two triangles whose sides are 35, 53, 66 and 33, 56, 65 measured in centimetres. {tex}{/tex}
For the first triangle, we have a = 35, b = 53 and c = 66.
{tex}\therefore \quad s = \frac { a + b + c } { 2 } = \frac { 35 + 53 + 66 } { 2 } = 77 \mathrm { cm }{/tex}
Let {tex}\Delta _ { 1 }{/tex} be the area of the first triangle. Then,
{tex}\Delta _ { 1 } = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 1 } = \sqrt { 77 ( 77 - 35 ) ( 77 - 53 ) ( 77 - 66 ) } = \sqrt { 77 \times 42 \times 24 \times 11 }{/tex}
{tex}\Rightarrow \quad \Delta _ { 1 } = \sqrt { 7 \times 11 \times 7 \times 6 \times 6 \times 4 \times 11 }{/tex}= {tex}\sqrt { 7 ^ { 2 } \times 11 ^ { 2 } \times 6 ^ { 2 } \times 2 ^ { 2 } } = 7 \times 11 \times 6 \times 2 = 924 \mathrm { cm } ^ { 2 }{/tex} ...(i)
For the second triangle, we have a = 33,b = 56,c = 65
{tex}\therefore \quad s = \frac { a + b + c } { 2 } = \frac { 33 + 56 + 65 } { 2 } = 77 \mathrm { cm }{/tex}
Let {tex}\Delta{/tex}2 be the area of the second triangle. Then,
{tex}\Delta _ { 2 } = \sqrt { s ( s - a ) ( s - b ) ( s - c ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = \sqrt { 77 ( 77 - 33 ) ( 77 - 56 ) ( 77 - 65 ) }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = \sqrt { 77 \times 44 \times 21 \times 12 }{/tex}= {tex}\sqrt { 7 \times 11 \times 4 \times 11 \times 3 \times 7 \times 3 \times 4 } = \sqrt { 7 ^ { 2 } \times 11 ^ { 2 } \times 4 ^ { 2 } \times 3 ^ { 2 } }{/tex}
{tex}\Rightarrow \quad \Delta _ { 2 } = 7 \times 11 \times 4 \times 3 = 924 \mathrm { cm } ^ { 2 }{/tex}
Let r be the radius of the circle. Then,
Area of the circle = Sum of the areas of two triangles
{tex}\Rightarrow \quad \pi r ^ { 2 } = \Delta _ { 1 } + \Delta _ { 2 }{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 }{/tex}= 924 + 924
{tex}\Rightarrow \quad \frac { 22 } { 7 } \times r ^ { 2 } = 1848{/tex}
{tex}\Rightarrow \quad r ^ { 2 } = 1848 \times \frac { 7 } { 22 } = 3 \times 4 \times 7 \times 7 \Rightarrow{/tex}{tex}r = \sqrt { 3 \times 2 ^ { 2 } \times 7 ^ { 2 } } = 2 \times 7 \times \sqrt { 3 } = 14 \sqrt { 3 } \mathrm { cm }{/tex}
0Thank You