No products in the cart.

The sum of first three terms …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The sum of first three terms of an AP is 48. If the product of first and second terms exceeds 4 times the third terms by 12. Find the AP.
  • 1 answers

Yogita Ingle 6 years, 10 months ago

<div itemprop="text">

Let the first three terms of the AP be (a-d), a and (a+d). Then,
(a -d) + a + (a + d) = 48
⇒ 3a = 38
⇒ a = 16
Now,
(a - d) × a = 4(a + d) + 12 (Given)
⇒ (16 -d) × 16 = 4(16 + d) + 12
⇒16d + 4d  = 256 - 76
⇒20d = 180
⇒ d= 9
When a= 16, d= 9
⇒ a - d = 16 - 9 = 5
a + d = 16 + 9 = 25
Hence, the first three terms of the AP are 7, 16, and 25.

</div>
https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App