Find value of k for which …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Samarth Jain 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given points are A(3k -1, k - 2), B(k, k - 7) and C(k-1, -k - 2)
We know that points A, B, C will be collinear, if the area of the ΔABC =0
Area of ΔABC={tex}\frac{1}{2}{/tex}|x1(y2 - y3)+x2(y3 - y1)+x3(y1 - y2)|
here, x1 =3k-1, x2 = k, x3= k-1, y1= k-2, y2= k-7, y3= -k-2
Area of ΔABC = 0
{tex}\Rightarrow{/tex} {tex}\frac{1}{2}{/tex}|(3k−1)[(k−7)−(−k−2)]+k[(−k−2)−(k−2)]+(k−1)[(k−2)−(k−7)]|=0
{tex}\Rightarrow{/tex} {tex}\frac{1}{2}{/tex}|(3k−1)(k−7+k+2)+k(−k−2−k+2)+(k−1)(k−2−k+7)|=0
{tex}\Rightarrow{/tex} |(3k−1)(2k−5)+k(−2k)+(k−1)(5)|=0
{tex}\Rightarrow{/tex} |3k(2k−5)−1(2k−5)−2k2+5k−5|=0
{tex}\Rightarrow{/tex} |6k2−15 k−2k+5−2k2+5k−5|=0
{tex}\Rightarrow{/tex} |4k2 - 10k - 2k|=0
{tex}\Rightarrow{/tex} 4k2 - 12k = 0
{tex}\Rightarrow{/tex} 4k(k-3) = 0
{tex}\Rightarrow{/tex} k = 0 or k - 3 =0
{tex}\Rightarrow{/tex} k = 0 or k = 3
0Thank You