No products in the cart.

The sum of n terms of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The sum of n terms of two ap's are in ratio 3n +8:7n+15. Find ratio of their 12th termd
  • 1 answers

Sia ? 6 years, 4 months ago

For the first AP,
Let first term=a1
common difference=d1
using formula:
{tex}\Longrightarrow \mathrm { S } _ { \mathrm { n } } = \frac { \mathrm { n } } { 2 } [ 2 \mathrm { a } + ( \mathrm { n } - 1 ) \mathrm { d } ]{/tex}
{tex}\Longrightarrow \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 1 } = \frac { \mathrm { n } } { 2 } \left[ 2 \mathrm { a } _ { 1 } + ( \mathrm { n } - 1 ) \mathrm { d } _ { 1 } \right]{/tex}
For 2nd AP.
Given, 
{tex}\Rightarrow{/tex}No. of terms=n
Let, 
{tex}\Rightarrow{/tex}first term=a2
{tex}\Rightarrow{/tex}common difference=d2
Using formula:
{tex}\Longrightarrow \mathrm { S } _ { \mathrm { n } } = \frac { \mathrm { n } } { 2 } [ 2 \mathrm { a } + ( \mathrm { n } - 1 ) \mathrm { d } ]{/tex}
{tex}\Longrightarrow \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 2 } = \frac { \mathrm { n } } { 2 } \left[ 2 \mathrm { a } _ { 2 } + ( \mathrm { n } - 1 ) \mathrm { d } _ { 2 } \right]{/tex}
According to question :
{tex}\Longrightarrow \frac { \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 1 } } { \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 2 } } = \frac { 3 \mathrm { n } + 8 } { 7 \mathrm { n } + 15 }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { \frac { n } { 2 } \left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \right] } { \frac { n } { 2 } \left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \right] } = \frac { 3 n + 8 } { 7 n + 15 }{/tex}
Substitute n=23:
{tex}\Longrightarrow \frac { 2 a _ { 1 } + ( 23 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 23 - 1 ) d _ { 2 } } = \frac { 3 \times 23 + 8 } { 7 \times 23 + 15 }{/tex}
{tex}\Longrightarrow \frac { 2 \mathrm { a } _ { 1 } + 22 \mathrm { d } _ { 1 } } { 2 \mathrm { a } _ { 2 } + 22 \mathrm { d } _ { 2 } } = \frac { 69 + 8 } { 161 + 15 }{/tex}
{tex}\Longrightarrow \frac { 2 \left( a _ { 1 } + 11 d _ { 1 } \right) } { 2 \left( a _ { 2 } + 11 d _ { 2 } \right) } = \frac { 77 } { 176 }{/tex}
{tex}\Longrightarrow \frac { a _ { 1 } + ( 12 - 1 ) d _ { 1 } } { a _ { 2 } + ( 12 - 1 ) d _ { 2 } } = \frac { 7 } { 16 }{/tex}
{tex}\Longrightarrow \frac { \left( T _ { 12 } \right) _ { 1 } } { \left( T _ { 12 } \right) _ { 2 } } = \frac { 7 } { 16 }{/tex}
{tex}\therefore{/tex} (T12)1 : (T12)2=7: 16.

https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App