The sum of n terms of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Keerthi Manjunath 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
For the first AP,
Let first term=a1
common difference=d1
using formula:
{tex}\Longrightarrow \mathrm { S } _ { \mathrm { n } } = \frac { \mathrm { n } } { 2 } [ 2 \mathrm { a } + ( \mathrm { n } - 1 ) \mathrm { d } ]{/tex}
{tex}\Longrightarrow \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 1 } = \frac { \mathrm { n } } { 2 } \left[ 2 \mathrm { a } _ { 1 } + ( \mathrm { n } - 1 ) \mathrm { d } _ { 1 } \right]{/tex}
For 2nd AP.
Given,
{tex}\Rightarrow{/tex}No. of terms=n
Let,
{tex}\Rightarrow{/tex}first term=a2
{tex}\Rightarrow{/tex}common difference=d2
Using formula:
{tex}\Longrightarrow \mathrm { S } _ { \mathrm { n } } = \frac { \mathrm { n } } { 2 } [ 2 \mathrm { a } + ( \mathrm { n } - 1 ) \mathrm { d } ]{/tex}
{tex}\Longrightarrow \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 2 } = \frac { \mathrm { n } } { 2 } \left[ 2 \mathrm { a } _ { 2 } + ( \mathrm { n } - 1 ) \mathrm { d } _ { 2 } \right]{/tex}
According to question :
{tex}\Longrightarrow \frac { \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 1 } } { \left( \mathrm { S } _ { \mathrm { n } } \right) _ { 2 } } = \frac { 3 \mathrm { n } + 8 } { 7 \mathrm { n } + 15 }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { \frac { n } { 2 } \left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \right] } { \frac { n } { 2 } \left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \right] } = \frac { 3 n + 8 } { 7 n + 15 }{/tex}
Substitute n=23:
{tex}\Longrightarrow \frac { 2 a _ { 1 } + ( 23 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 23 - 1 ) d _ { 2 } } = \frac { 3 \times 23 + 8 } { 7 \times 23 + 15 }{/tex}
{tex}\Longrightarrow \frac { 2 \mathrm { a } _ { 1 } + 22 \mathrm { d } _ { 1 } } { 2 \mathrm { a } _ { 2 } + 22 \mathrm { d } _ { 2 } } = \frac { 69 + 8 } { 161 + 15 }{/tex}
{tex}\Longrightarrow \frac { 2 \left( a _ { 1 } + 11 d _ { 1 } \right) } { 2 \left( a _ { 2 } + 11 d _ { 2 } \right) } = \frac { 77 } { 176 }{/tex}
{tex}\Longrightarrow \frac { a _ { 1 } + ( 12 - 1 ) d _ { 1 } } { a _ { 2 } + ( 12 - 1 ) d _ { 2 } } = \frac { 7 } { 16 }{/tex}
{tex}\Longrightarrow \frac { \left( T _ { 12 } \right) _ { 1 } } { \left( T _ { 12 } \right) _ { 2 } } = \frac { 7 } { 16 }{/tex}
{tex}\therefore{/tex} (T12)1 : (T12)2=7: 16.
0Thank You