A hollow cone is cut by …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Puja Sahoo? 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Assume that the ratio of the altitude of the bigger and smaller cone be l : L

Let R and r be the radii of the bigger and smaller cone respectively.
Let H and h be the height of the bigger and smaller cone respectively.
Clearly, {tex}\Delta V O ^ { \prime } A ^ { \prime } \sim \Delta V O A{/tex}
{tex}\therefore \quad \frac { V O ^ { \prime } } { V O } = \frac { O ^ { \prime } A ^ { \prime } } { O A } = \frac { V A ^ { \prime } } { V A } \Rightarrow \frac { h } { H } = \frac { r } { R } = \frac { l } { L }{/tex}
It is given that
Curved surface area of the frustum ABB'A = {tex}\frac { 8 } { 9 } \times{/tex}Curved surface area of the cone
{tex}\Rightarrow \quad \pi ( R + r ) ( L - l ) = \frac { 8 } { 9 } \pi R L{/tex}
{tex}\Rightarrow \quad ( R + r ) ( L - l ) = \frac { 8 } { 9 } R L{/tex}
{tex}\Rightarrow \quad \left( \frac { R + r } { R } \right) \left( \frac { L - l } { L } \right) = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \left( 1 + \frac { r } { R } \right) \left( 1 - \frac { l } { L } \right) = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \left( 1 + \frac { h } { H } \right) \left( 1 - \frac { h } { H } \right) = \frac { 8 } { 9 }{/tex} [Using (i)]
{tex}\Rightarrow \quad 1 - \frac { h ^ { 2 } } { H ^ { 2 } } = \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { H ^ { 2 } } = 1 - \frac { 8 } { 9 }{/tex}
{tex}\Rightarrow \quad \frac { h ^ { 2 } } { H ^ { 2 } } = \frac { 1 } { 9 } \Rightarrow \frac { h } { H } = \frac { 1 } { 3 } \Rightarrow h = \frac { H } { 3 }{/tex}
Hence, required ratio = {tex}\frac { h } { H - h } = \frac { \frac { H } { 3 } } { H - \frac { H } { 3 } } = \frac { 1 } { 2 }{/tex}
0Thank You