If two triangles are equiangular,prove that …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given: Two triangles ABC and DEF in which {tex}\angle{/tex} A = {tex}\angle{/tex}D, {tex}\angle{/tex}B = {tex}\angle{/tex}E and {tex}\angle{/tex}C = {tex}\angle{/tex}F, AL and DM are angle bisectors of {tex}\angle{/tex}A
and {tex}\angle{/tex}D respectively
To prove: {tex}\frac{{BC}}{{EF}} = \frac{{AL}}{{DM}}{/tex}
Proof: Triangle ABC and DEF are Similar.
{tex}\Rightarrow {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}}{/tex} ......(i)
In {tex}\triangle {/tex} ABL and {tex}\triangle {/tex} DEM, we have
{tex}\angle{/tex}B= {tex}\angle{/tex}E [Given]
{tex}\angle{/tex} BAL= {tex}\angle{/tex} EDM [ {tex}\because {/tex} {tex}\angle{/tex} A= {tex}\angle{/tex} D {tex}\Rightarrow {/tex} {tex}\frac{1}{2}\angle A = \frac{1}{2}\angle D{/tex}]
{tex}\Rightarrow {/tex} {tex}\triangle {/tex} ABL {tex} \sim {/tex} {tex}\triangle {/tex} DEM [AA similarity]
{tex}\Rightarrow {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{AL}}{{DM}}{/tex} .......(ii)
From (i) and (ii) we have
{tex}\frac{{BC}}{{EF}} = \frac{{AL}}{{DM}}{/tex}
0Thank You