No products in the cart.

two zeroes of the cubic polynomial …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

two zeroes of the cubic polynomial ax^3+3x^2-bx-6 are -1 and -2. find the 3rd zeo ad value of a and b
  • 1 answers

Sia ? 6 years, 6 months ago

Let {tex}p(x) =ax^3 + 3x^2 - bx - 6{/tex}
{tex}\because{/tex} - 1 is a zero
{tex}\therefore{/tex} {tex}p(-1) =0{/tex}
{tex}\Rightarrow{/tex} {tex}a(-1)^3 + 3(-1)^2 - b(-1) - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}-a + 3 + b - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}-a + b = 3.{/tex}.........(i)
Also, -2 is another zero
{tex}\therefore{/tex} {tex}p(-2) =0{/tex}
{tex}\Rightarrow{/tex} {tex}a(-2)^3 + 3(-2)^2 - b(-2) - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}- 8a + 12 + 2b - 6 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}- 8a + 2b = -6{/tex}
{tex}\Rightarrow{/tex} {tex}4a - b = 3{/tex}.........(ii)
Solving equation (i) and (ii), we get
a = 2 and b = 5
{tex}\therefore{/tex} p(x) = 2x3 + 3x- 5x - 6
Let third zero = k
Sum of zeroes = {tex}\frac { - 3 } { 2 }{/tex}
{tex}\Rightarrow{/tex} -1 + (-2) + k = {tex}\frac { - 3 } { 2 } \Rightarrow k = \frac { - 3 } { 2 } + 3 = \frac { 3 } { 2 }{/tex}
Therefore, third zero = {tex}\frac { 3 } { 2 }{/tex}

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
X-y=5
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App