In the right triangle B is …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Anugrah Verma 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Here we are given that
{tex}\therefore \quad A B + A D = B C + C D{/tex}
or, {tex}AD = BC+CD-AB{/tex}
or, {tex}AD =h+d-x{/tex}
In the right angled {tex}\Delta A C D,{/tex}
{tex}A D ^ { 2 } = A C ^ { 2 } + D C ^ { 2 }{/tex}
or, {tex}( h + d - x ) ^ { 2 } = ( x + h ) ^ { 2 } + d ^ { 2 }{/tex}
or, {tex}( h + d - x ) ^ { 2 } - ( x + h ) ^ { 2 } = d ^ { 2 }{/tex}
{tex}( h + d - x - x - h ) ( h + d - x + x + h ) = d ^ { 2 }{/tex}
{tex} Because \ a^2-b^2=(a-b)(a+b){/tex}
or, {tex}( d - 2 x ) ( 2 h + d ) = d ^ { 2 }{/tex}
or, {tex}2 h d + d ^ { 2 } - 4 h x - 2 x d = d ^ { 2 }{/tex}
or, {tex}2hd = 4hx+2xd{/tex}
{tex}2hd= 2x(2h+d){/tex}
Hence {tex}x = \frac { h d } { 2 h + d }{/tex}
0Thank You