(C2 ab)x2-(a2 -bc)x+b2 ac=0 has equal …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Tarushi Khattar 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
We have, {tex}(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0{/tex}
Here, {tex}A=(c^2-ab), B=-2(a^2-bc),C=b^2-ac{/tex}
Now, {tex}B^2-4AC =0{/tex}
{tex}4(a^2-bc)^2-4(c^2-ab)(b^2-ac)=0{/tex}
{tex}4(a^2-bc)^2=4(c^2-ab)(b^2-ac){/tex}
{tex}a^4-2a^2bc+b^2c^2=b^2c^2-ac^3-ab^3+a^2bc{/tex}
{tex}a^4-2a^2bc+ac^3+ab^3-a^2bc=0{/tex}
{tex}a^4-3a^2bc+ac^3+ab^3=0{/tex}
{tex}a(a^3-3abc+c^3+b^3)=0{/tex}
{tex}a=0 \ or \ a^3-3abc+c^3+b^3=0{/tex}
{tex}a=0\ or\ a^3+b^3+c^3=3abc{/tex}
Hence proved
0Thank You