A regular hexagon is inscribed in …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 6 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Consider the following figure:

We know that the regular hexagon is a combination of 6 equilateral triangles.
{tex}\therefore{/tex} Area of a hexagon = 6 {tex}\times{/tex} Area of {tex}\Delta O A B{/tex}
{tex}\Rightarrow \text { Area of } \Delta O A B = \frac { 24 \sqrt { 3 } } { 6 } = 4 \sqrt { 3 } \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow \frac { \sqrt { 3 } } { 4 } ( \text { side } ) ^ { 2 } = 4 \sqrt { 3 }{/tex}
{tex}\Rightarrow ( \text { side } ) ^ { 2 } = 4 \sqrt { 3 } \times \frac { 4 } { \sqrt { 3 } } = 16{/tex}
{tex}\Rightarrow{/tex} side = 4 cm
{tex}\Rightarrow{/tex} Radius of a circle = 4 cm
{tex}\therefore{/tex} Area of a circle {tex}= \pi r ^ { 2 } = 3.14 \times 4 \times 4 = 50.24 \mathrm { cm } ^ { 2 }{/tex}
0Thank You