the decorative block shown in figure …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month, 1 week ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 3 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let S be the total surface area of the decorative block. Then,

S = Total surface area of the cube - Base area of hemisphere + Curved surface area of hemisphere
{tex}\Rightarrow S = \left( 6 \times 5 \times 5 - \pi r ^ { 2 } + 2 \pi r ^ { 2 } \right) \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow S = \left( 150 + \pi r ^ { 2 } \right) \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow S = \left\{ 150 + \frac { 22 } { 7 } \times ( 2.1 ) ^ { 2 } \right\} \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow S = \{ 150 + 22 \times 0.3 \times 2.1 \} \mathrm { cm } ^ { 2 }{/tex}
{tex}\Rightarrow{/tex} S = (150 + 13.86) cm2 = 163.86 cm2
0Thank You