AD is an altitude of an …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Clearly, {tex}BD=\frac{BC}{2}=\frac{a}{2}{/tex} [In an equilateral triangle , altitude bisects the base]
In {tex}\triangle ABC{/tex}, {tex}\angle ADB=90^o{/tex}
Using pythgoras theorem,
AB2 = AD2 + BD2
{tex}\Rightarrow a^2=AD^2+(\frac{a}{2})^2{/tex}
{tex}\Rightarrow a^2=AD^2+(\frac{a^2}{4}){/tex}
{tex}\Rightarrow a^2 - (\frac{a^2}{4})=AD^2{/tex}
{tex}\Rightarrow (\frac{4a^2 - a^2}{4})=AD^2{/tex}
{tex}\Rightarrow AD=\frac{\sqrt3 a }{2}{/tex}
{tex}\therefore \triangle ABC{/tex} and {tex}\triangle ADE{/tex} are equilateral triangles and so equiangular.
{tex}\therefore \triangle ABC \sim \triangle ADE{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{AD^2}{AB^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{\frac{\sqrt{3}a}{2}}{a^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{3}{4}{/tex}
0Thank You