No products in the cart.

AD is an altitude of an …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

AD is an altitude of an equilateral triangle ABC.On base another equilateral triangle ADE is constructed.Prove that ar(triangle ADE) :ar (triangle ABC)=3:4
  • 1 answers

Sia ? 6 years, 6 months ago


Clearly, {tex}BD=\frac{BC}{2}=\frac{a}{2}{/tex} [In an equilateral triangle , altitude bisects the base]
In {tex}\triangle ABC{/tex}, {tex}\angle ADB=90^o{/tex}
Using pythgoras theorem,
AB2 = AD2 + BD
{tex}\Rightarrow a^2=AD^2+(\frac{a}{2})^2{/tex} 
{tex}\Rightarrow a^2=AD^2+(\frac{a^2}{4}){/tex}
{tex}\Rightarrow a^2 - (\frac{a^2}{4})=AD^2{/tex}
{tex}\Rightarrow (\frac{4a^2 - a^2}{4})=AD^2{/tex} 
{tex}\Rightarrow AD=\frac{\sqrt3 a }{2}{/tex} 
{tex}\therefore \triangle ABC{/tex} and {tex}\triangle ADE{/tex} are equilateral triangles and so equiangular. 
{tex}\therefore \triangle ABC \sim \triangle ADE{/tex} 
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{AD^2}{AB^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{\frac{\sqrt{3}a}{2}}{a^2}{/tex}
{tex}\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=\frac{3}{4}{/tex}

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App