If the ratio of the first …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let a, and A be the first terms and d and D be the common difference of two A.Ps
Then, according to the question,
{tex}\frac { S _ { n } } { S _ { n } ^ { \prime } } = \frac { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \frac { n } { 2 } [ 2 A + ( n - 1 ) D ] } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
or, {tex}\frac { 2 a + ( n - 1 ) d } { 2 A + ( n - 1 ) D } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
or,{tex}\frac { a + \left( \frac { n - 1 } { 2 } \right) d } { A + \left( \frac { n - 1 } { 2 } \right) D } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
Putting, {tex}\frac { n - 1 } { 2 } = m - 1{/tex}
{tex}n-1 = 2m - 2{/tex}
{tex}n= 2m - 2 + 1{/tex}
or, {tex}n = 2m - 1{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 7 ( 2 m - 1 ) + 1 } { 4 ( 2 m - 1 ) + 27 }{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 14 m - 7 + 1 } { 8 m - 4 + 27 }{/tex}
{tex}\frac { a + ( m - 1 ) d } { A + ( m - 1 ) D } = \frac { 14 m - 6 } { 8 m + 23 }{/tex}
Hence, {tex}\frac { a _ { m } } { A _ { m } } = \frac { 14 m - 6 } { 8 m + 23 }{/tex}
0Thank You