If the median of the distribution …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Vishal Singh 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Here, {tex}\sum f _ { i } = n = 60{/tex}, then {tex}\frac { n } { 2 } = \frac { 60 } { 2 } = 30{/tex}, also, median of the distribution is 28.5, which lies in interval 20 – 30.
{tex}\therefore{/tex} Median class = 20 – 30
So, l = 20, n = 60, f = 20, cf = 5 + x and h = 10
{tex}\because 45 + x + y = 60{/tex}
{tex}\Rightarrow x + y = 15{/tex} ………...........(i)
Now, Median = {tex}l + \left[ \frac { \frac { n } { 2 } - c f } { f } \right] \times h{/tex}
{tex}\Rightarrow { 28.5 = 20 + \left[ \frac { 30 - ( 5 + x ) } { 20 } \right] \times 10 }{/tex}
{tex}\Rightarrow 28.5 = 20 + \frac { 30 - 5 - x } { 2 }{/tex}
{tex}\Rightarrow { 28.5 } = \frac { 40 + 25 - x } { 2 }{/tex}
{tex}\Rightarrow 2 ( 28.5 ) = 65 - x{/tex}
{tex}\Rightarrow 57.0 = 65 - x{/tex}
{tex}\Rightarrow x = 65 - 57 = 8{/tex}
{tex}\Rightarrow{/tex} x = 8
Putting the value of x in eq. (i), we get,
8 + y = 15
{tex}\Rightarrow{/tex} y = 7
Hence the value of x and y are 8 and 7 respectively.
0Thank You