No products in the cart.

If the median of the distribution …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the median of the distribution given below is 28.5find the values of x and y
  • 1 answers

Sia ? 6 years, 6 months ago

<th scope="col">Monthly Consumption</th> <th scope="col">
0-10 5 5
10-20 x 5 + x
20-30 20 25 + x
30-40 15 40 + x
40-50 y 40 + x + y
50-60 5 45 + x + y
Total  {tex}\sum f _ { i } = n = 60{/tex}  

Here, {tex}\sum f _ { i } = n = 60{/tex}, then {tex}\frac { n } { 2 } = \frac { 60 } { 2 } = 30{/tex}, also, median of the distribution is 28.5, which lies in interval 20 – 30.

{tex}\therefore{/tex} Median class = 20 – 30

So, l = 20, n = 60, f = 20, cf = 5 + x and h = 10

{tex}\because 45 + x + y = 60{/tex}

{tex}\Rightarrow x + y = 15{/tex} ………...........(i)

Now, Median = {tex}l + \left[ \frac { \frac { n } { 2 } - c f } { f } \right] \times h{/tex}

{tex}\Rightarrow { 28.5 = 20 + \left[ \frac { 30 - ( 5 + x ) } { 20 } \right] \times 10 }{/tex}

{tex}\Rightarrow 28.5 = 20 + \frac { 30 - 5 - x } { 2 }{/tex}

{tex}\Rightarrow { 28.5 } = \frac { 40 + 25 - x } { 2 }{/tex}

{tex}\Rightarrow 2 ( 28.5 ) = 65 - x{/tex}

{tex}\Rightarrow 57.0 = 65 - x{/tex}

{tex}\Rightarrow x = 65 - 57 = 8{/tex}

{tex}\Rightarrow{/tex} x = 8

Putting the value of x in eq. (i), we get,

8 + y = 15

{tex}\Rightarrow{/tex} y = 7

Hence the value of x and y are 8 and 7 respectively.

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App