If the ratio of the sum …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let a1 and a2 be the first terms and d1 and d2 be the common difference of the two APs respectively.
Let Sn and S'n be the sums of the first n terms of the two APs and Tn and T'n be their nth terms respectively.
Then, {tex}\frac { S _ { n } } { S _ { n } ^ { \prime } } = \frac { 7 n + 1 } { 4 n + 27 } \Rightarrow \frac { \frac { n } { 2 } \left[ 2 a _ { 1 } + ( n - 1 ) d _ { 1 } \right] } { \frac { n } { 2 } \left[ 2 a _ { 2 } + ( n - 1 ) d _ { 2 } \right] } = \frac { 7 n + 1 } { 4 n + 27 }{/tex}
{tex}\Rightarrow \frac { 2 a _ { 1 } + ( n - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( n - 1 ) d _ { 2 } } = \frac { 7 n + 1 } { 4 n + 27 }{/tex} ........(i)
To find the ratio of mth terms, we replace n by (2m -1) in the above expression.
Replacing n by (2 {tex}\times{/tex} 9 -1), i.e., 17 on both sides in (i), we get
{tex}\frac { 2 a _ { 1 } + ( 17 - 1 ) d _ { 1 } } { 2 a _ { 2 } + ( 17 - 1 ) d _ { 2 } } = \frac { 7 \times 17 + 1 } { 4 \times 17 + 27 } \Rightarrow \frac { 2 a _ { 1 } + 16 d _ { 1 } } { 2 a _ { 2 } + 16 d _ { 2 } } = \frac { 120 } { 95 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + 8 d _ { 1 } } { a _ { 2 } + 8 d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + ( 9 - 1 ) d _ { 1 } } { a _ { 2 } + ( 9 - 1 ) d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { a _ { 1 } + ( 9 - 1 ) d _ { 1 } } { a _ { 2 } + ( 9 - 1 ) d _ { 2 } } = \frac { 24 } { 19 }{/tex}
{tex}\Rightarrow \frac { T _ { 9 } } { T _ { 9 } ^ { \prime } } = \frac { 24 } { 19 }{/tex}
{tex}\therefore{/tex} required ratio = 24:19.
0Thank You