No products in the cart.

A right angled triangle whose sides …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

A right angled triangle whose sides are 3cm and 4cm other than hypotenuse is an made to revolve about its hypotenuse find the volume and surface area of the double cone so formed is value of pi as a noun appreciate
  • 1 answers

Sia ? 6 years, 6 months ago

Let ABC be the equilateral triangle such that,
A = (3,0), B=(6,0) and C=(x,y)
Distance between:
{tex}\sqrt {( x_{2}-x_{1})^2+(y_{2} -y_{1})^{2} }{/tex}
we know that,
AB=BC=AC
By distance formula we get,
AB=BC=AC=3units
AC=BC
{tex}\sqrt{(3-x)^2+y^2}=\sqrt{(6-x)^2+y^2}{/tex}
{tex}9+x^2-6 x+y^2=36+x^2-12 x+y^2{/tex}
{tex}6 x=27{/tex}
{tex}x=27 / 6=9 / 2{/tex}
BC = 3 units
{tex}\sqrt{(6-\frac{27}{6})^2+y^2}=3{/tex}
{tex}(\frac{(36-27)}{6})^2+y^2=9{/tex}
{tex}(\frac{9}{6})^2+y^2=9{/tex}
{tex}(\frac{3}{2})^2+y^2=9{/tex}
{tex}\frac{9}{4}+y^2=9{/tex}
{tex}9+4 y^2=36{/tex}
{tex}4 y^2=27{/tex}
{tex}y^2=\frac{27}{4}{/tex}
{tex}y=\sqrt{(\frac{27}{4})}{/tex}
{tex}y=3 \sqrt{\frac{3}{2}}{/tex}
{tex}(x, y)=(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}
Hence third vertex of equilateral triangle = C = {tex}(9 / 2,3 \sqrt{\frac{3}{2}}){/tex}

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App