A solid metallic right circular cone …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
A solid metallic right circular cone 20cm high and whose vertical angle is 60°,is cut into two parts at the middle of its height by a plane parallel to its base.if the frustum so obtained be drawn into a wire of diameter 1/12cm,then find the length of the wire.
Posted by Palak Yadav 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
{tex}\Delta A B C{/tex} and {tex}\triangle A D E{/tex} are similar triangles and hence the corresponding sides are proportional.
B is the mid-point of AD.
Thus, {tex}\frac { A B } { A D } = \frac { B C } { D E }{/tex}
Let r and R be the radii of both the ends of the frustum.
So, {tex}\frac { 10 } { 20 } = \frac { r } { R }{/tex}
{tex}\Rightarrow{/tex} R = 2r
Also consider the {tex}\Delta A D E{/tex}
{tex}\tan 30 ^ { \circ } = \frac { \text { opposite side } } { \text { adjacent side } }{/tex}
{tex}\Rightarrow \frac { 1 } { \sqrt { 3 } } = \frac { R } { 20 }{/tex}
{tex}\Rightarrow R = \frac { 20 } { \sqrt { 3 } } \mathrm { cm }{/tex}
{tex}\Rightarrow r = \frac { 10 } { \sqrt { 3 } } \mathrm { cm }{/tex}
Volume of the frustum {tex}= \frac { \pi } { 3 } \left[ R ^ { 2 } + R r + r ^ { 2 } \right] h{/tex}
{tex}\Rightarrow{/tex} {tex}\pi \left( \frac { \frac { 1 } { 12 } } { 2 } \right) ^ { 2 } h = \frac { \pi } { 3 } \left[ \frac { 400 } { 3 } + \frac { 200 } { 3 } + \frac { 100 } { 3 } \right] \times 10{/tex}
{tex}\Rightarrow \frac { 1 } { 576 } \times h = \frac { 1 } { 3 } \left[ \frac { 700 } { 3 } \right] \times 10{/tex}
{tex}\Rightarrow{/tex} {tex}h = \frac { 1 } { 3 } \left[ \frac { 700 } { 3 } \right] \times 10 \times 576{/tex}
{tex}\Rightarrow{/tex} h = 100{tex}\times{/tex}10{tex}\times{/tex}576
{tex}\Rightarrow{/tex} h= 448000 cm
{tex}\Rightarrow{/tex} h= 4480 m
Hence, the length of the wire is 4480 m.
0Thank You