If the angle of elevation of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let the height of tower be h.

From {tex}\triangle A B D{/tex} {tex}\frac { h } { a } = \tan 30 ^ { \circ }{/tex}
{tex}\therefore {/tex} {tex}h = a \times \frac { 1 } { \sqrt { 3 } } = \frac { a } { \sqrt { 3 } } \quad \ldots ( \mathrm { i } ){/tex}
From {tex}\triangle A C D,{/tex} {tex}\frac { h } { b } = \tan 60 ^ { \circ }{/tex}
{tex}h = b \times \sqrt { 3 } = b \sqrt { 3 } \quad \ldots ( \mathrm { ii } ){/tex}
From (i) {tex}a = \sqrt { 3 } h{/tex}
From (ii) {tex}b = \frac { h } { \sqrt { 3 } }{/tex}
{tex}\therefore \quad a \times b = \sqrt { 3 } h \times \frac { h } { \sqrt { 3 } }{/tex}
{tex}\Rightarrow \quad h ^ { 2 } = a b{/tex}
{tex}\Rightarrow \quad h = \sqrt { a b }{/tex}
Hence, the height of the tower = {tex}\sqrt { a b }{/tex}
0Thank You