No products in the cart.

If the angle of elevation of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the angle of elevation of a cloud from point h meters above a lake is a and the angle of depression of its reflection in the lake is b prove that the height of the cloud is
  • 1 answers

Sia ? 6 years, 6 months ago

Let AB be the surface of the lake and P be the point of observation such that AP = 60 metres. Let C be the position of the cloud and C be its reflection in the lake. Then, CB = C'B. Let PM be perpendicular from P on CB. Then,{tex}\angle \mathrm { CPM } = 30 ^ { \circ }{/tex} and {tex}\angle C 'P M = 60 ^ { \circ }{/tex} Let CM = h. Then, CB = h + 60. Consequently, C'B = h + 60.
In {tex}\triangle \mathrm { CMP },{/tex} we have

{tex}\tan 30 ^ { \circ } = \frac { C M } { P M }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { \sqrt { 3 } } = \frac { h } { P M }{/tex} 
or, PM = √3 h........(I)
In {tex}\triangle P M C, ^ { \prime }{/tex} we have
{tex}\tan 60 ^ { \circ } = \frac { C ^ { \prime } M } { P M }{/tex}
{tex}\Rightarrow \quad \tan 60 ^ { \circ } = \frac { C B + B M } { P M }{/tex}
{tex}\Rightarrow \quad \sqrt { 3 } = \frac { h + 60 + 60 } { P M }{/tex}
{tex}\Rightarrow \quad P M = \frac { h + 120 } { \sqrt { 3 } }{/tex}.......(ii)
from equations (i) and (ii), we get
{tex}\sqrt { 3 } h = \frac { h + 120 } { \sqrt { 3 } } \Rightarrow 3 h = h + 120 \Rightarrow 2 h = 120 \Rightarrow h = 60{/tex}
Now, CB = CM + MB = h+ 60 = 60 + 60 = 120.
Hence, the height of the cloud from the surface of the lake is 120 metres.

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App