(tanA+cosecB)^2—(cotB–secA)^2=2tanAcotB(cosecA+secB)

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Shruti Saxena 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
We have,
LHS = (tanA + cosec B)2 - (cotB - sec A)2
{tex}\Rightarrow{/tex} LHS = (tan2A + cosec2B + 2tanA cosecB ) - (cot2B + sec2A - 2cotB secA)
{tex}\Rightarrow{/tex} LHS = (tan2A - sec2A)+(cosec2B - cot2B)+2tanA cosecB +2cotB secA
But, Sec2A - tan2A =1 & cosec2A - cot2 A = 1
{tex}\therefore{/tex} LHS = -1 + 1 + 2 tanA cosecB + 2cotB secA
{tex}\Rightarrow{/tex} LHS = 2 (tanA cosecB + cotB secA)
{tex}\Rightarrow{/tex} LHS = 2 tanA cotB{tex}\left( \frac { cosec\: B } { \cot B } + \frac { \sec A } { \tan A } \right){/tex} [Dividing and multiplying by tanA cotB]
{tex}\Rightarrow{/tex} LHS = 2tan A cotB{tex}\left\{ \frac { \frac { 1 } { \sin B } } { \frac { \cos B } { \sin B } } + \frac { \frac { 1 } { \cos A } } { \frac { \sin A } { \cos A } } \right\}{/tex} [Since, CosecA.SinA =1 , SecA.cosA =1, (sinA/cosA)= tanA & (cosA/SinA) =cotA ]
{tex}\Rightarrow{/tex} LHS = 2 tanA cotB{tex}\left( \frac { 1 } { \cos B } + \frac { 1 } { \sin A } \right){/tex} = 2tanA cotB ( secB + cosecA ) = RHS. Hence, proved.
0Thank You