AB is the diameter of a …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 4 weeks ago
- 1 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given,
AB is the diameter of the circle
{tex}\angle C O B = \theta{/tex}
According to question
Area of minor segment cut off by AC = 2 {tex}\times{/tex} Area of sector BOC
{tex}\Rightarrow \quad \frac { \angle A O C } { 360 ^ { \circ } } \times \pi r ^ { 2 } - \frac { 1 } { 2 } r ^ { 2 } \sin \angle A O C = 2 \times \frac { \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 }{/tex}
{tex}\Rightarrow \quad \frac { 180 - \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 } - \frac { 1 } { 2 } r ^ { 2 } \sin ( 180 - \theta ) = 2 \times \frac { \theta } { 360 ^ { \circ } } \pi r ^ { 2 }{/tex}
{tex}\Rightarrow \quad \frac { 180 - \theta } { 360 ^ { \circ } } \times \pi r ^ { 2 } - 2 \times \frac { \theta } { 360 ^ { \circ } } \pi r ^ { 2 } = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 } \left[ \frac { 180 - \theta } { 360 ^ { \circ } } - \frac { 2 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi r ^ { 2 } \left[ \frac { 180 - \theta - 2 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } r ^ { 2 } \sin \theta{/tex}
{tex}\Rightarrow \quad \pi \left[ \frac { 180 - 3 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } \sin \theta{/tex} [Cancel r2 from both side]
{tex}\Rightarrow \quad \pi \left[ \frac { 180 } { 360 ^ { \circ } } - \frac { 3 \theta } { 360 ^ { \circ } } \right] = \frac { 1 } { 2 } \times 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 }{/tex} [We know that {tex}\sin 2 \theta = 2 \sin \theta \cos \theta{/tex}]
{tex}\Rightarrow \quad \pi \left[ \frac { 1 } { 2 } - \frac { \theta } { 120 ^ { \circ } } \right] = \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 }{/tex} Hence Proved
0Thank You