From the top of the hill …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given, AB is the hill and P and Q are two consecutive km stones.
Let the height of the hill AB be h m and
{tex}BP = x \ m.{/tex}
{tex}PQ= 1 km = 1000m{/tex}
In {tex}\Delta \mathrm { ABP },{/tex}
{tex}\tan 45 ^ { \circ } = \frac { A B } { B P }{/tex}
{tex}\therefore 1 = \frac { h } { x }{/tex}
{tex}\Rightarrow{/tex} {tex}x = h{/tex} ...(i)
In {tex}\triangle \mathrm { ABQ },{/tex}
{tex}\tan 30 ^ { \circ } = \frac { \mathrm { AB } } { \mathrm { BQ } }{/tex}
{tex}\therefore \frac { 1 } { \sqrt { 3 } } = \frac { h \mathrm { m } } { ( x + 1000 ) \mathrm { m } }{/tex} {tex}[ \because \mathrm { BQ } = \mathrm { BP } + \mathrm { PQ } = x + 1000]{/tex}
{tex}\Rightarrow{/tex}{tex}x + 1000 ={/tex} {tex}\sqrt { 3 } h{/tex}
{tex}\Rightarrow \sqrt { 3 } h = h + 1000{/tex}[Using (i)]
{tex}\Rightarrow ( \sqrt { 3 } - 1 ) h = 1000{/tex}
{tex}\Rightarrow h = \frac { 1000 } { \sqrt { 3 } - 1 }{/tex}
{tex}\Rightarrow h = \frac { 1000 ( \sqrt { 3 } + 1 ) } { ( \sqrt { 3 } - 1 ) ( \sqrt { 3 } + 1 ) }\\ = \frac { 1000 ( \sqrt { 3 } + 1 ) } { ( 3 - 1 ) } \\= \frac { 1000 ( \sqrt { 3 } + 1 ) } { 2 }\\ = 500 ( \sqrt { 3 } + 1 ){/tex}
0Thank You