No products in the cart.

From the top of the hill …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

From the top of the hill the angles of depression of two consecutive kilometre stones due east are found to be 30 and 45. Find the height of the hill.
  • 1 answers

Sia ? 6 years, 6 months ago


Given, AB is the hill and P and Q are two consecutive km stones.
Let the height of the hill AB be h m and
{tex}BP = x \ m.{/tex}
{tex}PQ= 1 km = 1000m{/tex}
In {tex}\Delta \mathrm { ABP },{/tex}
{tex}\tan 45 ^ { \circ } = \frac { A B } { B P }{/tex}
{tex}\therefore 1 = \frac { h } { x }{/tex}
{tex}\Rightarrow{/tex} {tex}x = h{/tex} ...(i)
In {tex}\triangle \mathrm { ABQ },{/tex}
{tex}\tan 30 ^ { \circ } = \frac { \mathrm { AB } } { \mathrm { BQ } }{/tex}
{tex}\therefore \frac { 1 } { \sqrt { 3 } } = \frac { h \mathrm { m } } { ( x + 1000 ) \mathrm { m } }{/tex} {tex}[ \because \mathrm { BQ } = \mathrm { BP } + \mathrm { PQ } = x + 1000]{/tex}
{tex}\Rightarrow{/tex}{tex}x + 1000 ={/tex} {tex}\sqrt { 3 } h{/tex}
{tex}\Rightarrow \sqrt { 3 } h = h + 1000{/tex}[Using (i)]
{tex}\Rightarrow ( \sqrt { 3 } - 1 ) h = 1000{/tex}
{tex}\Rightarrow h = \frac { 1000 } { \sqrt { 3 } - 1 }{/tex}
{tex}\Rightarrow h = \frac { 1000 ( \sqrt { 3 } + 1 ) } { ( \sqrt { 3 } - 1 ) ( \sqrt { 3 } + 1 ) }\\ = \frac { 1000 ( \sqrt { 3 } + 1 ) } { ( 3 - 1 ) } \\= \frac { 1000 ( \sqrt { 3 } + 1 ) } { 2 }\\ = 500 ( \sqrt { 3 } + 1 ){/tex}

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App