ABC is an ososceles triangle right …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Let AB = x, BC = x

Area of an equilateral triangle of side a = {tex}\frac { \sqrt { 3 } } { 4 }{/tex}a2
Area of {tex}\triangle{/tex}BCD = {tex}\frac { \sqrt { 3 } } { 4 }{/tex}x2 ..(i)
Now side AC = {tex}\sqrt { x ^ { 2 } + x ^ { 2 } } = \sqrt { 2 x ^ { 2 } } = x \sqrt { 2 }{/tex} (by pythagoras theorem)
Area of {tex}\triangle{/tex}ACE = {tex}\frac { \sqrt { 3 } } { 4 } ( \sqrt { 2 } x ) ^ { 2 }{/tex} = 2
{tex}\frac { \sqrt { 3 } } { 4 }{/tex}x2 = 2. Area of BCD [from (i)]
{tex}\therefore{/tex} ar{tex}\triangle{/tex}BCD = {tex}\frac{1}{2}{/tex}area of {tex}\triangle{/tex}ACE.
0Thank You