Evaluate this: Cos58/sin32 + sin22/cos68 - …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Mahesh Kumar Yadav 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have,
{tex}2\left(\frac{\cos58^\circ}{\sin32^\circ}\right)-\sqrt3\left(\frac{\cos38^\circ cosec52^\circ}{\tan15^\circ\tan60^\circ\tan75^\circ}\right){/tex}
{tex}=2\left\{\frac{\cos\left(90^\circ-32^\circ\right)}{\sin32^\circ}\right\}-\sqrt3\left\{\frac{\cos38^\circ cosec\left(90^\circ-38^\circ\right)}{\tan15^\circ\tan60^\circ\tan\left(90^\circ-15^\circ\right)}\right\}{/tex}
{tex}= 2 \left( \frac { \sin 32 ^ { \circ } } { \sin 32 ^ { \circ } } \right) - \sqrt { 3 } \left\{ \frac { \cos 38 ^ { \circ } \sec 38 ^ { \circ } } { \tan 15 ^ { \circ } \times \sqrt { 3 } \times \cot 15 ^ { \circ } } \right\}{/tex} {tex}\left[\because\;\cos\left(90-\theta\right)=\sin\theta\;,\;\cos ec\left(90-\theta\right)=sec\theta,\;\tan\left(90-\theta\right)=cot\theta\;\right]{/tex}
{tex}= 2 - \sqrt { 3 } \left\{ \frac { \cos 38 ^ { \circ } \times \frac { 1 } { \cos 38 ^ { \circ } } } { \tan 15 ^ { \circ } \times \sqrt { 3 } \times \frac { 1 } { \tan 15 ^ { \circ } } } \right\} = 2 - \frac { \sqrt { 3 } } { \sqrt { 3 } } = 2 - 1 = 1{/tex} {tex}\left[sec\theta=\frac1{\cos\theta},\;cot\theta=\frac1{\tan\theta}\right]{/tex}
therefore, {tex}2\left(\frac{\cos58^\circ}{\sin32^\circ}\right)-\sqrt3\left(\frac{\cos38^\circ cosec52^\circ}{\tan15^\circ\tan60^\circ\tan75^\circ}\right)=1{/tex}
0Thank You