In triangle abc the base ab …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given:- In {tex}\Delta{/tex}ABC, CA = CB and AP {tex}\times{/tex} BQ = AC2

To prove:- {tex}\Delta{/tex}APC ~ {tex}\Delta{/tex}BCQ
Proof:- AP {tex}\times{/tex} BQ = AC2 [Given]
{tex}\Rightarrow AP \times BQ = AC \times AC{/tex}
{tex} \Rightarrow AP \times BQ = AC \times BC{/tex} [AC = BC given]
{tex}\Rightarrow \frac{{AP}}{{BC}} = \frac{{AC}}{{BQ}}{/tex} ....(i)
Since, CA = CB [Given]
Therefore, {tex}\angle CAB = \angle CBA{/tex} ...(ii) [Opposite angles to equal sides]
Now, {tex}\angle CAB + \angle CAP = 180^\circ {/tex} ...(iii) [Linear pair of angles]
And, {tex}\angle CBA + \angle CBQ = 180^\circ {/tex} ...(iv) [Linear pair of angles]
Therefore, Comparing equation (ii)(iii) and (iv),we get,
{tex}\angle CAP = \angle CBQ{/tex} ...(v)
In {tex}\Delta{/tex}APC and {tex}\Delta{/tex}BCQ
{tex}\angle CAP = \angle CBQ{/tex} [From (v)]
{tex}\frac{{AP}}{{BC}} = \frac{{AC}}{{BQ}}{/tex} [From (i)]
Therefore,by SAS criteria of similar triangles,we have,
Then, {tex}\Delta{/tex}APC ~ {tex}\Delta{/tex}BCQ
0Thank You