If areas of two similar triangles …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Praveen Kumar 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given : {tex}\triangle \mathrm{ABC}{\sim} \triangle \mathrm{PQR}{/tex} &
ar {tex}\triangle \mathrm{ABC}{/tex} = ar {tex}\Delta \mathrm{PQR}{/tex}
{tex}{/tex}To prove: {tex}\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}{/tex}
Since, {tex}\triangle \mathrm{ABC}{\sim} \Delta \mathrm{PQR}{/tex}
ar {tex}\triangle A B C=\text { ar } \triangle P Q R{/tex} (given)
{tex}\frac{{\Delta ABC}}{{ar\Delta PQR}} = 1{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{{A{B^2}}}{{P{Q^2}}} = \frac{{B{C^2}}}{{Q{R^2}}} = \frac{{C{A^2}}}{{P{R^2}}} = 1{/tex}
[Using Theorem of area of similar Triangles]
{tex}\Rightarrow{/tex} AB = PQ, BC = QR & CA = PR
Thus, {tex}\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}{/tex}
0Thank You