Find the roots. (x-5)(x-6)=25/24²

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Saurav Kumar 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
According to the question,
{tex}(x - 5)(x - 6) = \frac{{25}}{{{{\left( {24} \right)}^2}}}{/tex}
{tex}\Rightarrow x(x - 6) - 5(x - 6) = \frac{{25}}{{{{(24)}^2}}}{/tex}
{tex}\Rightarrow {x^2} - 6x - 5x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + 30 - \frac{{25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - 11x + \frac{{30 \times {{24}^2} - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{30 \times 576 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex} \Rightarrow {x^2} - 11x + \frac{{17280 - 25}}{{{{(24)}^2}}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{264x}}{{24}} + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \left( {\frac{{145}}{{24}} + \frac{{119}}{{24}}} \right)x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow {x^2} - \frac{{145}}{{24}}x - \frac{{119}}{{24}}x + \frac{{145}}{{24}} \times \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x\left( {x - \frac{{145}}{{24}}} \right) - \frac{{119}}{{24}}\left( {x - \frac{{145}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow \left( {x - \frac{{145}}{{24}}} \right)\left( {x - \frac{{119}}{{24}}} \right) = 0{/tex}
{tex}\Rightarrow x - \frac{{145}}{{24}} = 0{/tex} or {tex}x - \frac{{119}}{{24}} = 0{/tex}
{tex}\Rightarrow x = \frac{{145}}{{24}}{/tex} or {tex}x = \frac{{119}}{{24}}{/tex}
0Thank You