ax+by =a2 , bx +ay=b2 . …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Satyam Maharana 6 years, 6 months ago
- 2 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We can write the given system of equations as
ax + by - a2 = 0........(1)
bx + ay - b2 = 0........(2)
From equation (1) & (2), we have
a1 = a, b1 = b, c1 = -a2
a2 = b, b2 = a, and c2 = -b2
Therefore, by cross-multiplication, we get
{tex}\Rightarrow \frac{x}{{b \times ( - {b^2}) - ( - {a^2}) \times a}}{/tex}{tex} = \frac{{ - y}}{{a \times ( - {b^2}) - ( - {a^2}) \times b}}{/tex}{tex}= \frac{1}{{a \times a - b \times b}}{/tex}
{tex}\Rightarrow \frac{x}{{ - {b^3} + {a^3}}} = \frac{{ - y}}{{ - a{b^2} + {a^2}b}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
Now,
{tex}\frac{x}{{ - {b^3} + {a^3}}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow x = \frac{{{a^3} - {b^3}}}{{{a^2} - {b^2}}}{/tex}
{tex} = \frac{{(a - b)\left( {{a^2} + ab + {b^2}} \right)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{{a^2} + ab + {b^2}}}{{a + b}}{/tex}
also
{tex}\frac{{ - y}}{{ - a{b^2} + {a^2}b}} = \frac{1}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow - y = \frac{{{a^2}b - a{b^2}}}{{{a^2} - {b^2}}}{/tex}
{tex}\Rightarrow y = \frac{{a{b^2} - {a^2}b}}{{{a^2} - {b^2}}}{/tex}
{tex} = \frac{{ab(b - a)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{ - ab(a - b)}}{{(a - b)(a + b)}}{/tex}
{tex} = \frac{{ - ab}}{{a + b}}{/tex}
Therefore, {tex}x = \frac{{{a^2} + ab + {b^2}}}{{a + b}},\;y = \frac{{ - ab}}{{a + b}}{/tex} is the solution of the given system of the equations.
0Thank You