If bac is 90degree AD is …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Poonam Negi 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
To prove the given result,we will use the following theorm.
The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle
Since AD is the bisector of {tex}\angle{/tex}A of {tex}\Delta{/tex}ABC.

{tex}\therefore \quad \frac { A B } { A C } = \frac { B D } { D C }{/tex} [by above theorm]
{tex}\Rightarrow \quad \frac { A B } { A C } + 1 = \frac { B D } { D C } + 1{/tex}[Adding 1 on both sides]
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B D + D C } { D C }{/tex}
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B C } { D C }{/tex} ... (i)
In {tex}\Delta{/tex}'s CDE and CBA, we have
{tex}\angle{/tex}DCE = {tex}\angle{/tex}BCA = {tex}\angle{/tex}C [Common]
{tex}\angle{/tex}BAC = {tex}\angle{/tex}DEC [Each equal to 90°]
So, by AA-criterion of similarity, we have
{tex}\Delta{/tex}CDE ~ {tex}\Delta{/tex}CBA
{tex}\Rightarrow \quad \frac { C D } { C B } = \frac { D E } { B A }{/tex}
{tex}\Rightarrow \quad \frac { A B } { D E } = \frac { B C } { D C }{/tex} ...(ii)
From (i) and (ii), we obtain
{tex}\frac { A B + A C } { A C } = \frac { A B } { D E } \Rightarrow D E \times ( A B + A C ) = A B \times A C{/tex}
0Thank You