No products in the cart.

If bac is 90degree AD is …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If bac is 90degree AD is it's bisector. If DE is perpendicular to AC. Prove that DE*(AB+AC)=AB*AC
  • 1 answers

Sia ? 6 years, 6 months ago

To prove the given result,we will use the following theorm.

The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle

Since AD is the bisector of {tex}\angle{/tex}A of {tex}\Delta{/tex}ABC.

{tex}\therefore \quad \frac { A B } { A C } = \frac { B D } { D C }{/tex} [by above theorm]
{tex}\Rightarrow \quad \frac { A B } { A C } + 1 = \frac { B D } { D C } + 1{/tex}[Adding 1 on both sides]
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B D + D C } { D C }{/tex}
{tex}\Rightarrow \quad \frac { A B + A C } { A C } = \frac { B C } { D C }{/tex} ... (i)
In {tex}\Delta{/tex}'s CDE and CBA, we have
{tex}\angle{/tex}DCE = {tex}\angle{/tex}BCA = {tex}\angle{/tex}C [Common]
{tex}\angle{/tex}BAC = {tex}\angle{/tex}DEC [Each equal to 90°]
So, by AA-criterion of similarity, we have
{tex}\Delta{/tex}CDE ~ {tex}\Delta{/tex}CBA
{tex}\Rightarrow \quad \frac { C D } { C B } = \frac { D E } { B A }{/tex}
{tex}\Rightarrow \quad \frac { A B } { D E } = \frac { B C } { D C }{/tex} ...(ii)
From (i) and (ii), we obtain
{tex}\frac { A B + A C } { A C } = \frac { A B } { D E } \Rightarrow D E \times ( A B + A C ) = A B \times A C{/tex}

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App