No products in the cart.

In an ap of 50terms the …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

In an ap of 50terms the sum of first 10terms is 210and sum of last 15 terms is 2565 find ap
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be the first term and d be the common difference of the given AP. Therefore, the sum of first n terms is given by
{tex}S _ { n } = \frac { n } { 2 } \cdot \{ 2 a + ( n - 1 ) d \}{/tex}
{tex}\therefore{/tex} S10 = {tex}\frac{{10}}{2}{/tex}{tex}\cdot{/tex}(2a+9d) {tex}\Rightarrow{/tex}5(2a+9d)=210
{tex}\Rightarrow{/tex}2a+9d=42. ...(i)
Sum of last 15 terms = (S50 - S35).
{tex}\therefore{/tex} (S50 - S35) = 2565
{tex}\Rightarrow{/tex} {tex}\frac{{50}}{2}{/tex}(2a+49d)- {tex}\frac{{35}}{2}{/tex}(2a+34d)=2565
{tex}\Rightarrow{/tex} 25(2a+49d)-35(a+17d)=2565
{tex}\Rightarrow{/tex} (50a-35a)+(1225d-595d)=2565
{tex}\Rightarrow{/tex} 15a+630d = 2565 {tex}\Rightarrow{/tex} a + 42d = 171 ...... (ii)
Therefore, on solving (i) and (ii), we get a=3 and d=4.
Hence, the required AP is 3,7,11,15,19.....

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App