No products in the cart.

ABC is a right triangle right …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

ABC is a right triangle right angled at B such that BC=6cm and AB=8cm . Find the radius of its incircle
  • 1 answers

Sia ? 6 years, 6 months ago

Let ABC be the right angled triangle such that ∠B = 90° , BC = 6 cm, AB = 8 cm. Let O be the centre and r be the radius of the in circle.

AB, BC and CA are tangents to the circle at P, Nand M.
{tex}\therefore{/tex} OP = ON = OM = r (radius of the circle)
Area of the {tex}\triangle{/tex}ABC = {tex}\frac{1}{2} \times 6 \times 8{/tex}= 24 cm2
By Pythagoras theorem,
CA2 = AB2 + BC2
{tex}\Rightarrow{/tex} CA2 = 82 + 62
{tex}\Rightarrow{/tex} CA2 = 100
{tex}\Rightarrow{/tex} CA = 10 cm
Area of the {tex}\triangle{/tex}ABC = Area {tex}\triangle{/tex}OAB + Area {tex}\triangle{/tex}OBC + Area {tex}\triangle{/tex}OCA
24 = {tex}\frac{1}{2} r \times \mathrm{AB}+\frac{1}{2} r \times \mathrm{B} \mathrm{C}+\frac{1}{2} r \times \mathrm{C} \mathrm{A}{/tex}
24 = {tex}\frac{1}{2} r{/tex}(AB + BC + CA)
{tex}\Rightarrow r=\frac{2 \times 24}{(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})}{/tex}
{tex}\Rightarrow r=\frac{48}{8+6+10}{/tex}
{tex}\Rightarrow r=\frac{48}{24}{/tex}
{tex}\Rightarrow{/tex} r = 2 cm

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App