Pq is a chord of length …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given radius, OP = OQ = 5 cm
Length of chord, PQ = 4 cm
OT {tex}\perp{/tex} PQ,
{tex}\therefore{/tex} PM = MQ = 4 cm [Perpendicular draw from the centre of the circle to a chord bisect the chord]
In right {tex}\triangle{/tex}OPM, OP2 = PM2 + OM2
{tex}\Rightarrow{/tex} 52 = 42 + OM2
{tex}\Rightarrow{/tex} OM2 = 25 – 16 = 9
Hence OM = 3cm
In right {tex}\triangle{/tex}PTM, PT2 = TM2 + PM2 {tex}\rightarrow{/tex} (1)
OPT = 90o [Radius is perpendicular to tangent at point of contact]
In right {tex}\triangle{/tex}OPT, OT2 = PT2 + OP2 {tex}\rightarrow{/tex} (2)
From equations (1) and (2), we get
OT2 = (TM2 + PM2) + OP2
{tex}\Rightarrow{/tex} (TM + OM)2 = (TM2 + PM2) + OP2
{tex}\Rightarrow{/tex} TM2 + OM2 + 2 {tex}\times{/tex} TM {tex}\times{/tex} OM = TM2 + PM2 + OP2
{tex}\Rightarrow{/tex} OM2 + 2 {tex}\times{/tex} TM {tex}\times{/tex} OM = PM2 + OP2
{tex}\Rightarrow{/tex} 32 + 2 {tex}\times{/tex} TM {tex}\times{/tex} 3 = 42 + 52
{tex}\Rightarrow{/tex} 9 + 6TM = 16 + 25
{tex}\Rightarrow{/tex} 6TM = 32
{tex}\Rightarrow{/tex} TM ={tex}\frac{16}3{/tex}
Equation (1) becomes,
PT2 = TM2 + PM2
= ({tex}\frac{16}3{/tex})2 + 42
= ({tex}\frac{256}9{/tex}) + 16 = {tex}\frac{256+ 144}9{/tex}
= ({tex}\frac{400}9{/tex}) = ({tex}\frac{20}3{/tex})2
Hence PT ={tex}\frac{20}3{/tex}
Thus, the length of tangent PT is ({tex}\frac{20}3{/tex}) cm.
0Thank You