If alpha and beta are the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
It is given that {tex} \alpha{/tex} and {tex} \beta{/tex} are the zeros of the quadratic polynomial {tex}f(x)=ax^2+bx+c{/tex}
{tex} \therefore \quad \alpha + \beta = - \frac { b } { a } \text { and } \alpha \beta = \frac { c } { a }{/tex}
Now,
{tex} \frac { \alpha ^ { 2 } } { \beta } + \frac { \beta ^ { 2 } } { \alpha } = \frac { \alpha ^ { 3 } + \beta ^ { 3 } } { \alpha \beta }{/tex}
{tex} = \frac { ( \alpha + \beta ) ^ { 3 } - 3 \alpha \beta ( \alpha + \beta ) } { \alpha \beta } = \frac { \left( - \frac { b } { a } \right) ^ { 3 } - 3 \left( \frac { c } { a } \right) \left( - \frac { b } { a } \right) } { \frac { c } { a } } = \frac { 3 a b c - b ^ { 3 } } { a ^ { 2 } c }{/tex}
0Thank You