A point on the hypotenuse of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
{tex}AP = a\cos ec\theta {/tex}
{tex}BP = b\sec \theta {/tex}
{tex}l = AP + BP{/tex}
{tex}l = a\cos ec\theta + b\sec \theta {/tex}
{tex}\frac{{dl}}{{d\theta }} = -a\cos ec\theta \cot \theta + b\sec \theta .\tan \theta {/tex}
{tex}\frac{{{d^2}l}}{{d{\theta ^2}}} = a\cos e{c^2}\theta + a\cos ec\theta {\cot ^2}\theta + {b^2} - {\sec ^3}\theta + b\sec \theta .{\tan ^2}\theta {/tex}
For maximum/minimum
{tex}\frac{{dl}}{{d\theta }} = 0{/tex}
{tex}\frac{{dl}}{{d\theta }} = -a\cos ec\theta \cot \theta + b\sec \theta .\tan \theta {/tex}
{tex}\frac{acos\theta}{sin^2\theta}=\frac{bsin\theta}{cos^2\theta}{/tex}
{tex}{\tan ^3}\theta = \frac{a}{b}{/tex}
{tex}\tan \theta = {\left( {\frac{a}{b}} \right)^{1/3}}{/tex}
{tex}\sin \theta = \frac{{{a^{1/3}}}}{{\sqrt {{a^{2/3}} + {b^{2/3}}} }},\cos \theta = \frac{{{b^{1/3}}}}{{\sqrt {{a^{2/3}} + {b^{2/3}}} }}{/tex}
{tex}\frac{{{d^2}l}}{{d{\theta ^2}}} < 0{/tex} for {tex}\tan \theta = {\left( {\frac{a}{b}} \right)^{1/3}}{/tex}
l is minimum and minimum value of l is given by,
{tex}l = a\cos ec\theta + b\sec \theta {/tex}
{tex}=a\sqrt{1+cot^2\theta}+b\sqrt{1+tan^2\theta}{/tex}
{tex}=a\sqrt{1+(\frac{b}{a})^{2/3}}+b\sqrt{1+(\frac{a}{b})^{2/3}}{/tex}
{tex}=a^{2/3}\sqrt{a^{2/3}+b^{2/3}}+b^{2/3}\sqrt{b^{2/3}+a^{2/3}}{/tex}
{tex}l = {\left( {{a^{2/3}} + {b^{2/3}}} \right)^{3/2}}{/tex}
0Thank You