Am is perpendicular to bc tan …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Bhumi Bhumika 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
In right {tex}\triangle {/tex}AMB,
tan B = {tex}\frac { 3 } { 4 }{/tex}
{tex}\Rightarrow{/tex} {tex}\frac { A M } { B M } = \frac { 3 } { 4 }{/tex}
{tex}\Rightarrow{/tex} 4AM = 3BM {tex}\Rightarrow{/tex}BM = {tex}\frac { 4 } { 3 }{/tex}AM ...(i)
In right {tex}\triangle{/tex}AMC,
tan C = {tex}\frac { \mathrm { AM } } { \mathrm { MC } }{/tex}
{tex}\Rightarrow \frac { 5 } { 12 } = \frac { \mathrm { AM } } { \mathrm { MC } }{/tex}
{tex}\Rightarrow{/tex} MC = {tex}\frac { 12 } { 5 }{/tex} AM ...(ii)
Now, BM + MC = BC
{tex}\frac { 4 } { 3 }{/tex}AM + {tex}\frac { 12 } { 5 }{/tex}AM = 56
AM {tex}\left( \frac { 4 } { 3 } + \frac { 12 } { 5 } \right){/tex} = 56
AM {tex}\left( \frac { 20 + 36 } { 15 } \right){/tex} = 56
{tex}\Rightarrow{/tex} AM = {tex}\frac { 56 \times 15 } { 56 }{/tex}
= 15 cm
0Thank You