ABC is a triangle with angle …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Given, In {tex}\triangle{/tex}ABC,
{tex}\angle{/tex}B = 2{tex}\angle{/tex}C .......(1)
AD = CD ........(2)
AD bisects {tex}\angle{/tex}BAC.
So, {tex}\angle BAD = \angle DAC{/tex} = {tex}\frac {1} {2}{/tex}{tex}\angle A{/tex}.....(3)
Since AD = CD ,hence in {tex}\triangle ADC{/tex} ;
{tex}\angle{/tex}C = {tex}\angle{/tex}DAC.......(4) [angles opposite to equal sides are equal]
But from (1),
{tex}\angle{/tex}B = 2{tex}\angle{/tex}C
{tex}\Rightarrow{/tex} {tex}\angle{/tex}B = 2 {tex}\angle{/tex}DAC [ from (4) ]
{tex}\Rightarrow{/tex} {tex}\angle{/tex}B = {tex}\angle{/tex}A [ from (3) ] ..........(5)
Clearly , from (1) & (5) ;
{tex}\angle A =\angle B =2 \angle C{/tex}.......(6)
Now, {tex}\angle{/tex}A + {tex}\angle{/tex}B + {tex}\angle{/tex}C = 180° [Angle Sum Property of triangle]
{tex}\Rightarrow \angle A + \angle A + \frac{\angle A}{2} = 180°{/tex}
{tex}\Rightarrow{/tex} {tex}\frac{4\angle A + \angle A}{2} =180°{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{5\angle A}{2} = 180°{/tex} {tex}\Rightarrow{/tex} {tex}\angle A{/tex} = {tex}\frac{180^o \times 2}{5}{/tex}
{tex}\Rightarrow{/tex}{tex}\angle{/tex}A = 72o {tex}\Rightarrow{/tex} {tex}\angle{/tex}BAC = 72o
0Thank You