Two tangents TP and TQ are …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Nitish Payal 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let {tex}\angle O P Q \text { be } \theta{/tex}
{tex}\therefore \quad \angle T P Q = \left( 90 ^ { \circ } - \theta \right){/tex}
Since TP = TQ (Tangents)
{tex}\therefore \quad \angle T Q P = \left( 90 ^ { \circ } - \theta \right){/tex}
(Opposite angels of equal sides)
Now, {tex}\angle T P Q + \angle T Q P + \angle P T Q{/tex} = 180o
{tex}\Rightarrow 90 ^ { \circ } - \theta + 90 ^ { \circ } - \theta + \angle P T Q{/tex} {tex}= 180 ^ { \circ }{/tex}
{tex}\Rightarrow \quad \angle P T Q = 180 ^ { \circ } - 180 ^ { \circ } + 2 \theta{/tex}
{tex}\Rightarrow \quad \angle P T Q = 2 \theta{/tex}
Hence {tex}\angle P T Q = 2 \angle O P Q{/tex}
0Thank You